Topological Anomaly Detection Performance with Multispectral Polarimetric Imagery
نویسنده
چکیده
Polarimetric imaging has demonstrated utility for increasing contrast of manmade targets above natural background clutter. Manual detection of manmade targets in multispectral polarimetric imagery can be challenging and a subjective process for large datasets. Analyst exploitation may be improved utilizing conventional anomaly detection algorithms such as RX. In this paper we examine the performance of a relatively new approach to anomaly detection, which leverages topology theory, applied to spectral polarimetric imagery. Detection results for manmade targets embedded in a complex natural background will be presented for both the RX and Topological Anomaly Detection (TAD) approaches. We will also present detailed results examining detection sensitivities relative to: (1) the number of spectral bands, (2) utilization of Stoke’s images versus intensity images, and (3) airborne versus spaceborne measurements.
منابع مشابه
Object separation by polarimetric and spectral imagery fusion
When light is reflected from object surface, its spectral characteristics will be affected by the surface’s elemental composition, and its polarimetric characteristics will be governed by the surface’s roughness and conductance. Polarimetric and multispectral imaging can provide complementary discriminative information in applications such as object separation. However, few methods have been pr...
متن کاملAnomaly Detection from Hyperspectral Remote Sensing Imagery
Hyperspectral remote sensing imagery contains much more information in the spectral domain than does multispectral imagery. The consecutive and abundant spectral signals provide a great potential for classification and anomaly detection. In this study, two real hyperspectral data sets were used for anomaly detection. One data set was an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) da...
متن کاملEllipsoids for Anomaly Detection in Remote Sensing Imagery
For many target and anomaly detection algorithms, a key step is the estimation of a centroid (relatively easy) and a covariance matrix (somewhat harder) that characterize the background clutter. For a background that can be modeled as a multivariate Gaussian, the centroid and covariance lead to an explicit probability density function that can be used in likelihood ratio tests for optimal detec...
متن کاملRobust Materials Classification Based on Multispectral Polarimetric BRDF Imagery
When light is reflected from object surface, its spectral characteristics will be affected by surface’s elemental composition, while its polarimetric characteristics will be determined by the surface’s orientation, roughness and conductance. Multispectral polarimetric imaging technique records both the spectral and polarimetric characteristics of the light, and adds dimensions to the spatial in...
متن کاملFeature-based anomaly detection
A feature-based approach for detecting anomalies in spectral, spatial, temporal, and other domains is described. When the frequency of occurrence is small relative to the background, anomalies such as man-made objects in natural image backgrounds do not form their own clusters, but are instead assigned the nearest background cluster, becoming an outlier (statistical anomaly) in that cluster. Ou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009